3 You are given that \(\mathrm { f } ( x ) = ( x + 3 ) ( x - 2 ) ( x - 5 )\).
- Sketch the curve \(y = \mathrm { f } ( x )\).
- Show that \(\mathrm { f } ( x )\) may be written as \(x ^ { 3 } - 4 x ^ { 2 } - 11 x + 30\).
- Describe fully the transformation that maps the graph of \(y = \mathrm { f } ( x )\) onto the graph of \(y = \mathrm { g } ( x )\), where \(\mathrm { g } ( x ) = x ^ { 3 } - 4 x ^ { 2 } - 11 x - 6\).
- Show that \(\mathrm { g } ( - 1 ) = 0\). Hence factorise \(\mathrm { g } ( x )\) completely.