OCR MEI C1 (Core Mathematics 1)

Question 1
View details
1
  1. A curve has equation \(y = x ^ { 2 } - 4\). Find the \(x\)-coordinates of the points on the curve where \(y = 21\).
  2. The curve \(y = x ^ { 2 } - 4\) is translated by \(\binom { 2 } { 0 }\). Write down an equation for the translated curve. You need not simplify your answer.
Question 2
View details
2 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{91e16597-234a-4730-8c4b-765ca574e6e2-1_522_528_867_803} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Fig. 2 shows graphs \(A\) and \(B\).
  1. State the transformation which maps graph \(A\) onto graph \(B\).
  2. The equation of graph \(A\) is \(y = \mathrm { f } ( x )\). Which one of the following is the equation of graph \(B\) ? $$\begin{aligned} & y = \mathrm { f } ( x ) + 2
    & y = 2 \mathrm { f } ( x ) \end{aligned}$$ $$\begin{aligned} & y = \mathrm { f } ( x ) - 2
    & y = \mathrm { f } ( x + 3 ) \end{aligned}$$ $$\begin{aligned} & y = \mathrm { f } ( x + 2 )
    & y = \mathrm { f } ( x - 3 ) \end{aligned}$$
Question 3
View details
3 You are given that \(\mathrm { f } ( x ) = ( x + 3 ) ( x - 2 ) ( x - 5 )\).
  1. Sketch the curve \(y = \mathrm { f } ( x )\).
  2. Show that \(\mathrm { f } ( x )\) may be written as \(x ^ { 3 } - 4 x ^ { 2 } - 11 x + 30\).
  3. Describe fully the transformation that maps the graph of \(y = \mathrm { f } ( x )\) onto the graph of \(y = \mathrm { g } ( x )\), where \(\mathrm { g } ( x ) = x ^ { 3 } - 4 x ^ { 2 } - 11 x - 6\).
  4. Show that \(\mathrm { g } ( - 1 ) = 0\). Hence factorise \(\mathrm { g } ( x )\) completely.
Question 4
View details
4
  1. You are given that \(\mathrm { f } ( x ) = ( 2 x - 5 ) ( x - 1 ) ( x - 4 )\).
    (A) Sketch the graph of \(y = \mathrm { f } ( x )\).
    (B) Show that \(\mathrm { f } ( x ) = 2 x ^ { 3 } - 15 x ^ { 2 } + 33 x - 20\).
  2. You are given that \(\mathrm { g } ( x ) = 2 x ^ { 3 } - 15 x ^ { 2 } + 33 x - 40\).
    (A) Show that \(\mathrm { g } ( 5 ) = 0\).
    (B) Express \(\mathrm { g } ( x )\) as the product of a linear and quadratic factor.
    (C) Hence show that the equation \(\mathrm { g } ( x ) = 0\) has only one real root.
  3. Describe fully the transformation that maps \(y = \mathrm { f } ( x )\) onto \(y = \mathrm { g } ( x )\).