OCR MEI C1 (Core Mathematics 1)

Question 1
View details
1
  1. Statement P is \(a + b = 4\).
    Statement Q is \(\quad a = 1\) and \(b = 3\).
    Which one of the following is correct? $$\mathrm { P } \Rightarrow \mathrm { Q } , \quad \mathrm { P } \Leftrightarrow \mathrm { Q } , \quad \mathrm { P } \Leftarrow \mathrm { Q }$$
  2. Statement R is \(\quad x = 2\). Statement S is \(\quad x ^ { 2 } = 4\). Which one of the following is correct? $$R \Rightarrow S , \quad R \Leftrightarrow S , \quad R \Leftarrow S$$
Question 2
View details
2 Find the equation of the straight line which is parallel to the line \(y = 3 x + 5\) and which goes through the point \(( 2,12 )\).
Question 3
View details
3 Find the term which has the highest coefficient in the expansion of \(( 1 + x ) ^ { 8 }\).
Question 4
View details
4 The surface area of the surface of a cylinder is given by the formula $$A = 2 \pi r ( r + h )$$ Rearrange this formula so that \(h\) is the subject.
Question 5
View details
5 Solve the following equations.
  1. \(\quad 2 ^ { x } = \frac { 1 } { 8 }\).
  2. \(\quad x ^ { - \frac { 1 } { 2 } } = \frac { 1 } { 4 }\)
Question 6
View details
6 Find the positive integer values of \(x\) for which $$\frac { 1 } { 2 } ( 26 - 2 x ) \geq 2 ( 3 + x )$$
Question 7
View details
7 The remainder when \(x ^ { 3 } - 2 x + 4\) is divided by ( \(x - 2\) ) is twice the remainder when \(x ^ { 2 } + x + k\) is divided by ( \(x + 1\) ).
Find the value of \(k\).
Question 8
View details
8 Find the values of \(a\) and \(b\) for which \(\frac { 4 } { ( 2 \sqrt { 3 } - 1 ) } = a + b \sqrt { 3 }\).
Question 9
View details
9 Find the coordinates of the points where the curve \(y = x ^ { 2 } - 2 x - 8\) meets the line \(y = x + 2\).
Question 10
View details
10 The diagram shows the graph of \(y = \mathrm { f } ( x )\).
\includegraphics[max width=\textwidth, alt={}, center]{4c556b8e-1a19-4480-bf2a-0ef9e67f98b4-3_507_1085_933_383} A is the minimum point of the curve at \(( 3 , - 4 )\) and B is the point \(( 5,0 )\).
On separate diagrams on graph paper, draw the graphs of the following. In each case give the coordinates of the images of the points A and B .
  1. \(\quad y = \mathrm { f } ( x ) + 2\),
  2. \(y = \mathrm { f } ( x + 2 )\).
Question 11
View details
11 Fig. 11 shows the graph of \(y = a x ^ { 2 } + b x + c\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4c556b8e-1a19-4480-bf2a-0ef9e67f98b4-4_572_1509_465_285} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure}
  1. Explain why a must be negative.
  2. State two factors of \(y = a x ^ { 2 } + b x + c\).
  3. Hence, or otherwise, find the values of \(a , b\) and \(c\). Another function is given by \(y = x ^ { 2 } - 4 x + 10\).
  4. Write this in completed square form.
  5. Explain why the graphs of these two functions never meet.
Question 12
View details
12 The function \(\mathrm { f } ( x )\) is given by \(\mathrm { f } ( x ) = x ^ { 3 } + 6 x ^ { 2 } + 5 x - 12\).
  1. Show that \(( x + 3 )\) is a factor of \(\mathrm { f } ( x )\).
  2. Find the other factors of \(\mathrm { f } ( x )\).
  3. State the coordinates where the graph of \(y = \mathrm { f } ( x )\) cuts the \(x\) axis. Hence sketch the graph of \(y = \mathrm { f } ( x )\).
  4. On the same graph sketch also \(y = x ( x - 1 ) ( x - 2 )\) Label the two points of intersection of the two curves A and B .
  5. By equating the two curves, show that the \(x\) coordinates of A and B satisfy the equation \(3 x ^ { 2 } + x - 4 = 0\).
    Solve this equation to find the \(x\)-coordinates of A and B .
Question 13
View details
13 In Fig.13, XP and XQ are the perpendicular bisectors of AC and BC respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4c556b8e-1a19-4480-bf2a-0ef9e67f98b4-5_409_768_383_604} \captionsetup{labelformat=empty} \caption{Fig. 13}
\end{figure}
  1. Find the coordinates of X .
  2. Hence show that \(\mathrm { AX } = \mathrm { BX } = \mathrm { CX }\).
  3. The circumcircle of a triangle is the circle which passes through the vertices of the triangle.
    Write down the equation of the circumcircle of the triangle ABC .
  4. Find the coordinates of the points where the circle cuts the \(x\) axis.