Show that the equation \(\cos \theta ( 7 \tan \theta - 5 \cos \theta ) = 1\) can be written in the form \(a \sin ^ { 2 } \theta + b \sin \theta + c = 0\), where \(a , b\) and \(c\) are integers to be found.
Hence solve the equation \(\cos 2 x ( 7 \tan 2 x - 5 \cos 2 x ) = 1\) for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
\includegraphics[max width=\textwidth, alt={}, center]{d6976a4b-aecf-43f1-a3f2-bcad37d03585-06_2718_35_141_2012}
\includegraphics[max width=\textwidth, alt={}, center]{d6976a4b-aecf-43f1-a3f2-bcad37d03585-07_2714_33_144_22}