\includegraphics[max width=\textwidth, alt={}, center]{d6976a4b-aecf-43f1-a3f2-bcad37d03585-04_582_922_335_575}
The diagram shows the curve \(y = k \cos \left( x - \frac { 1 } { 6 } \pi \right)\) where \(k\) is a positive constant and \(x\) is measured in radians. The curve crosses the \(x\)-axis at point \(A\) and \(B\) is a minimum point.
Find the coordinates of \(A\) and \(B\).
Find the exact value of \(t\) that satisfies the equation
$$3 \sin ^ { - 1 } ( 3 t ) + 2 \cos ^ { - 1 } \left( \frac { 1 } { 2 } \sqrt { 2 } \right) = \pi .$$
\includegraphics[max width=\textwidth, alt={}, center]{d6976a4b-aecf-43f1-a3f2-bcad37d03585-04_2718_33_141_2013}