CAIE P2 2024 June — Question 5

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2024
SessionJune
TopicFixed Point Iteration

5 A curve has equation \(\mathrm { y } = \frac { 1 + \mathrm { e } ^ { 2 \mathrm { x } } } { 1 + 3 \mathrm { x } }\). The curve has exactly one stationary point \(P\).
  1. Find \(\frac { \mathrm { dy } } { \mathrm { dx } }\) and hence show that the \(x\)-coordinate of \(P\) satisfies the equation \(x = \frac { 1 } { 6 } + \frac { 1 } { 2 } \mathrm { e } ^ { - 2 x }\).
  2. Show by calculation that the \(x\)-coordinate of \(P\) lies between 0.35 and 0.45 .
  3. Use an iterative formula based on the equation in part (a) to find the \(x\)-coordinate of \(P\) correct to 3 significant figures. Give the result of each iteration to 5 significant figures.
    \includegraphics[max width=\textwidth, alt={}, center]{971a1d8d-a82e-4a3a-b72d-3c147e4f30bb-10_451_647_258_699} The diagram shows the curve with equation \(\mathrm { y } = \sqrt { \sin 2 \mathrm { x } + \sin ^ { 2 } 2 \mathrm { x } }\) for \(0 \leqslant x \leqslant \frac { 1 } { 6 } \pi\). The shaded region is bounded by the curve and the straight lines \(x = \frac { 1 } { 6 } \pi\) and \(y = 0\).