CAIE P2 2023 June — Question 7

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2023
SessionJune
TopicParametric equations

7 A curve has parametric equations $$x = \frac { 2 t + 3 } { t + 2 } , \quad y = t ^ { 2 } + a t + 1$$ where \(a\) is a constant. It is given that, at the point \(P\) on the curve, the gradient is 1 .
  1. Show that the value of \(t\) at \(P\) satisfies the equation $$2 t ^ { 3 } + ( a + 8 ) t ^ { 2 } + ( 4 a + 8 ) t + 4 a - 1 = 0$$
  2. It is given that \(( t + 1 )\) is a factor of $$2 t ^ { 3 } + ( a + 8 ) t ^ { 2 } + ( 4 a + 8 ) t + 4 a - 1$$ Find the value of \(a\).
  3. Hence show that \(P\) is the only point on the curve at which the gradient is 1 .
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.