7 The position vectors of the points \(A , B , C , D , G\) are given by
$$\mathbf { a } = 6 \mathbf { i } + 4 \mathbf { j } + 8 \mathbf { k } , \quad \mathbf { b } = 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k } , \quad \mathbf { c } = \mathbf { i } + 5 \mathbf { j } + 4 \mathbf { k } , \quad \mathbf { d } = 3 \mathbf { i } + 6 \mathbf { j } + 5 \mathbf { k } , \quad \mathbf { g } = 3 \mathbf { i } + 4 \mathbf { j } + 5 \mathbf { k }$$
respectively.
- The line through \(A\) and \(G\) meets the plane \(B C D\) at \(M\). Write down the vector equation of the line through \(A\) and \(G\) and hence show that the position vector of \(M\) is \(2 \mathbf { i } + 4 \mathbf { j } + 4 \mathbf { k }\).
- Find the value of the ratio \(A G : A M\).
- Find the position vector of the point \(P\) on the line through \(C\) and \(G\), such that \(\overrightarrow { C P } = \frac { 4 } { 3 } \overrightarrow { C G }\).
- Verify that \(P\) lies in the plane \(A B D\).