6. Two forces, \(( 4 \mathbf { i } - 5 \mathbf { j } ) \mathrm { N }\) and \(( p \mathbf { i } + q \mathbf { j } ) \mathrm { N }\), act on a particle \(P\) of mass \(m \mathrm {~kg}\). The resultant of the two forces is \(\mathbf { R }\). Given that \(\mathbf { R }\) acts in a direction which is parallel to the vector ( \(\mathbf { i } - 2 \mathbf { j }\) ),
- find the angle between \(\mathbf { R }\) and the vector \(\mathbf { j }\),
- show that \(2 p + q + 3 = 0\).
Given also that \(q = 1\) and that \(P\) moves with an acceleration of magnitude \(8 \sqrt { } 5 \mathrm {~m} \mathrm {~s} ^ { - 2 }\), (c) find the value of \(m\).