6.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fade35da-8dca-4d98-a07c-ed3a173fccda-16_398_860_210_543}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
Two particles \(P\) and \(Q\) have masses 0.1 kg and 0.5 kg respectively. The particles are attached to the ends of a light inextensible string. Particle \(P\) is held at rest on a rough horizontal table. The string lies along the table and passes over a small smooth pulley which is fixed to the edge of the table. Particle \(Q\) is at rest on a smooth plane which is inclined to the horizontal at an angle \(\theta\), where \(\tan \theta = \frac { 4 } { 3 }\)
The string lies in the vertical plane which contains the pulley and a line of greatest slope of the inclined plane, as shown in Figure 2. Particle \(P\) is released from rest with the string taut. During the first 0.5 s of the motion \(P\) does not reach the pulley and \(Q\) moves 0.75 m down the plane.
- Find the tension in the string during the first 0.5 s of the motion.
- Find the coefficient of friction between \(P\) and the table.
\includegraphics[max width=\textwidth, alt={}, center]{fade35da-8dca-4d98-a07c-ed3a173fccda-19_72_59_2613_1886}