4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fade35da-8dca-4d98-a07c-ed3a173fccda-08_396_483_214_735}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
A fixed rough plane is inclined to the horizontal at an angle \(\alpha\), where \(\tan \alpha = \frac { 3 } { 4 }\) A small box of mass \(m\) is at rest on the plane. A force of magnitude \(k m g\), where \(k\) is a constant, is applied to the box. The line of action of the force is at angle \(\alpha\) to the line of greatest slope of the plane through the box, as shown in Figure 1, and lies in the same vertical plane as this line of greatest slope. The coefficient of friction between the box and the plane is \(\mu\). The box is on the point of slipping up the plane. By modelling the box as a particle, find \(k\) in terms of \(\mu\).