Edexcel FP3 2018 June — Question 6

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
Year2018
SessionJune
TopicVectors: Cross Product & Distances

6. The line \(l _ { 1 }\) has equation $$\mathbf { r } = \mathbf { i } + 2 \mathbf { k } + \lambda ( 2 \mathbf { i } + 3 \mathbf { j } - \mathbf { k } )$$ where \(\lambda\) is a scalar parameter. The line \(l _ { 2 }\) has equation $$\frac { x + 1 } { 1 } = \frac { y - 4 } { 1 } = \frac { z - 1 } { 3 }$$
  1. Prove that the lines \(l _ { 1 }\) and \(l _ { 2 }\) are skew.
  2. Find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\) The plane \(\Pi\) contains \(l _ { 1 }\) and intersects \(l _ { 2 }\) at the point \(( 3,8,13 )\).
  3. Find a cartesian equation for the plane \(\Pi\).