6. The line \(l _ { 1 }\) has equation
$$\mathbf { r } = \mathbf { i } + 2 \mathbf { k } + \lambda ( 2 \mathbf { i } + 3 \mathbf { j } - \mathbf { k } )$$
where \(\lambda\) is a scalar parameter.
The line \(l _ { 2 }\) has equation
$$\frac { x + 1 } { 1 } = \frac { y - 4 } { 1 } = \frac { z - 1 } { 3 }$$
- Prove that the lines \(l _ { 1 }\) and \(l _ { 2 }\) are skew.
- Find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\)
The plane \(\Pi\) contains \(l _ { 1 }\) and intersects \(l _ { 2 }\) at the point \(( 3,8,13 )\).
- Find a cartesian equation for the plane \(\Pi\).