Edexcel FP3 2018 June — Question 3

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
Year2018
SessionJune
Topic3x3 Matrices

3. \(\mathbf { M } = \left( \begin{array} { r r r } 3 & k & 2
- 1 & 0 & 1
1 & k & 1 \end{array} \right)\), where \(k\) is a constant Given that 3 is an eigenvalue of \(\mathbf { M }\),
  1. find the value of \(k\).
  2. Hence find the other two eigenvalues of \(\mathbf { M }\).
  3. Find an eigenvector corresponding to the eigenvalue 3
    3. \(\quad \mathbf { M } = \left( \begin{array} { r c c } 3 & k & 2
    - 1 & 0 & 1
    1 & k & 1 \end{array} \right)\), where \(k\) is a constant Given that 3 is an eigenvalue of \(\mathbf { M }\), (a) find the value of \(k\).