Edexcel FP3 2011 June — Question 7

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
Year2011
SessionJune
TopicVectors: Lines & Planes

  1. The matrix \(\mathbf { M }\) is given by
$$\mathbf { M } = \left( \begin{array} { r r r } k & - 1 & 1
1 & 0 & - 1
3 & - 2 & 1 \end{array} \right) , \quad k \neq 1$$
  1. Show that \(\operatorname { det } \mathbf { M } = 2 - 2 k\).
  2. Find \(\mathbf { M } ^ { - 1 }\), in terms of \(k\). The straight line \(l _ { 1 }\) is mapped onto the straight line \(l _ { 2 }\) by the transformation represented by the matrix \(\left( \begin{array} { r r r } 2 & - 1 & 1
    1 & 0 & - 1
    3 & - 2 & 1 \end{array} \right)\). The equation of \(l _ { 2 }\) is \(( \mathbf { r } - \mathbf { a } ) \times \mathbf { b } = 0\), where \(\mathbf { a } = 4 \mathbf { i } + \mathbf { j } + 7 \mathbf { k }\) and \(\mathbf { b } = 4 \mathbf { i } + \mathbf { j } + 3 \mathbf { k }\).
  3. Find a vector equation for the line \(l _ { 1 }\).