A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Integration using inverse trig and hyperbolic functions
Q3
Edexcel FP3 2011 June — Question 3
Exam Board
Edexcel
Module
FP3 (Further Pure Mathematics 3)
Year
2011
Session
June
Topic
Integration using inverse trig and hyperbolic functions
Show that
\(\int _ { 5 } ^ { 8 } \frac { 1 } { x ^ { 2 } - 10 x + 34 } \mathrm {~d} x = k \pi\), giving the value of the fraction \(k\),
\(\int _ { 5 } ^ { 8 } \frac { 1 } { \sqrt { } \left( x ^ { 2 } - 10 x + 34 \right) } \mathrm { d } x = \ln ( A + \sqrt { } n )\), giving the values of the integers \(A\) and \(n\).
$$I _ { n } = \int _ { 1 } ^ { \mathrm { e } } x ^ { 2 } ( \ln x ) ^ { n } \mathrm {~d} x , \quad n \geqslant 0$$
Prove that, for \(n \geqslant 1\), $$I _ { n } = \frac { \mathrm { e } ^ { 3 } } { 3 } - \frac { n } { 3 } I _ { n - 1 }$$
Find the exact value of \(I _ { 3 }\).
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q5
Q6
Q7
Q8