3. A particle \(P\) of mass 0.25 kg is moving on a smooth horizontal surface under the action of a single force, \(\mathbf { F }\) newtons.
At time \(t\) seconds \(( t \geqslant 0 )\), the velocity \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\) of \(P\) is given by
$$\mathbf { v } = ( 6 \sin 3 t ) \mathbf { i } + ( 1 + 2 \cos t ) \mathbf { j }$$
- Find \(\mathbf { F }\) in terms of \(t\).
At time \(t = 0\), the position vector of \(P\) relative to a fixed point \(O\) is \(( 4 \mathbf { i } - \sqrt { 3 } \mathbf { j } ) \mathrm { m }\).
- Find the position vector of \(P\) relative to \(O\) when \(P\) is first moving parallel to the vector \(\mathbf { i }\).