7. Two forces \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) act on a particle \(P\).
The force \(\mathbf { F } _ { 1 }\) is given by \(\mathbf { F } _ { 1 } = ( - \mathbf { i } + 2 \mathbf { j } ) \mathrm { N }\) and \(\mathbf { F } _ { 2 }\) acts in the direction of the vector \(( \mathbf { i } + \mathbf { j } )\).
Given that the resultant of \(\mathbf { F } _ { 1 }\) and \(\mathbf { F } _ { 2 }\) acts in the direction of the vector ( \(\mathbf { i } + 3 \mathbf { j }\) ),
- find \(\mathbf { F } _ { 2 }\)
(7)
The acceleration of \(P\) is \(( 3 \mathbf { i } + 9 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 2 }\). At time \(t = 0\), the velocity of \(P\) is \(( 3 \mathbf { i } - 22 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) - Find the speed of \(P\) when \(t = 3\) seconds.