4. Two trains \(M\) and \(N\) are moving in the same direction along parallel straight horizontal tracks. At time \(t = 0 , M\) overtakes \(N\) whilst they are travelling with speeds \(40 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(30 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively. Train \(M\) overtakes train \(N\) as they pass a point \(X\) at the side of the tracks.
After overtaking \(N\), train \(M\) maintains its speed of \(40 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) for \(T\) seconds and then decelerates uniformly, coming to rest next to a point \(Y\) at the side of the tracks.
After being overtaken, train \(N\) maintains its speed of \(30 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) for 25 s and then decelerates uniformly, also coming to rest next to the point \(Y\).
The times taken by the trains to travel between \(X\) and \(Y\) are the same.
- Sketch, on the same diagram, the speed-time graphs for the motions of the two trains between \(X\) and \(Y\).
Given that \(X Y = 975 \mathrm {~m}\),
- find the value of \(T\).