3.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 2}
\includegraphics[alt={},max width=\textwidth]{5b5d70b1-1eb6-461f-9277-5912b914f443-04_282_842_296_561}
\end{figure}
A uniform rod \(A B\) has length 1.5 m and mass 8 kg . A particle of mass \(m \mathrm {~kg}\) is attached to the rod at \(B\). The rod is supported at the point \(C\), where \(A C = 0.9 \mathrm {~m}\), and the system is in equilibrium with \(A B\) horizontal, as shown in Figure 2.
- Show that \(m = 2\).
A particle of mass 5 kg is now attached to the rod at \(A\) and the support is moved from \(C\) to a point \(D\) of the rod. The system, including both particles, is again in equilibrium with \(A B\) horizontal.
- Find the distance \(A D\).