8. A car which has run out of petrol is being towed by a breakdown truck along a straight horizontal road. The truck has mass 1200 kg and the car has mass 800 kg . The truck is connected to the car by a horizontal rope which is modelled as light and inextensible. The truck's engine provides a constant driving force of 2400 N . The resistances to motion of the truck and the car are modelled as constant and of magnitude 600 N and 400 N respectively. Find
- the acceleration of the truck and the ear,
- the tension in the rope.
When the truck and car are moving at \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the rope breaks. The engine of the truck provides the same driving force as before. The magnitude of the resistance to the motion of the truck remains 600 N .
- Show that the truck reaches a speed of \(28 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) approximately 6 s earlier than it would have done if the rope had not broken.
\section*{END}