7. Two trains \(A\) and \(B\) run on parallel straight tracks. Initially both are at rest in a station and level with each other. At time \(t = 0 , A\) starts to move. It moves with constant acceleration for 12 s up to a speed of \(30 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), and then moves at a constant speed of \(30 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Train \(B\) starts to move in the same direction as \(A\) when \(t = 40\), where \(t\) is measured in seconds. It accelerates with the same initial acceleration as \(A\), up to a speed of \(60 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It then moves at a constant speed of \(60 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Train \(B\) overtakes \(A\) after both trains have reached their maximum speed. Train \(B\) overtakes \(A\) when \(t = T\).
- Sketch, on the same diagram, the speed-time graphs of both trains for \(0 \leq t \leq T\).
- Find the value of \(T\).