Edexcel FP2 Specimen — Question 7

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
SessionSpecimen
TopicSecond order differential equations

7. (a) Given that \(x = e ^ { t }\), show that
  1. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { e } ^ { - t } \frac { \mathrm {~d} y } { \mathrm {~d} t }$$
  2. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \mathrm { e } ^ { - 2 t } \left( \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} t } \right)$$ (b) Use you answers to part (a) to show that the substitution \(x = \mathrm { e } ^ { t }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = x ^ { 3 }$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 3 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 2 y = \mathrm { e } ^ { 3 t }$$ (c) Hence find the general solution of $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = x ^ { 3 }$$