Edexcel FP2 (Further Pure Mathematics 2) Specimen

Question 1
View details
  1. Find the set of values of \(x\) for which
$$\frac { x } { x - 3 } > \frac { 1 } { x - 2 }$$
Question 2
View details
  1. (a) Express as a simplified single fraction \(\frac { 1 } { r ^ { 2 } } - \frac { 1 } { ( r + 1 ) ^ { 2 } }\)
    (b) Hence prove, by the method of differences, that
$$\sum _ { r = 1 } ^ { n } \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } = 1 - \frac { 1 } { ( n + 1 ) ^ { 2 } }$$
Question 3
View details
  1. (a) Show that the transformation \(T\)
$$w = \frac { z - 1 } { z + 1 }$$ maps the circle \(| z | = 1\) in the \(z\)-plane to the line \(| w - 1 | = | w + \mathrm { i } |\) in the \(w\)-plane. The transformation \(T\) maps the region \(| z | \leq 1\) in the \(z\)-plane to the region \(R\) in the \(w\)-plane.
(b) Shade the region \(R\) on an Argand diagram.
Question 4
View details
4. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + y \frac { \mathrm {~d} y } { \mathrm {~d} x } = x , \quad y = 0 , \frac { \mathrm {~d} y } { \mathrm {~d} x } = 2 \text { at } x = 1$$ Find a series solution of the differential equation in ascending powers of ( \(x - 1\) ) up to and including the term in \(( x - 1 ) ^ { 3 }\).
Question 5
View details
5. (a) Obtain the general solution of the differential equation $$\frac { \mathrm { d } S } { \mathrm {~d} t } - 0.1 S = t$$ (b) The differential equation in part (a) is used to model the assets, \(\pounds S\) million, of a bank \(t\) years after it was set up. Given that the initial assets of the bank were \(\pounds 200\) million, use your answer to part (a) to estimate, to the nearest \(\pounds\) million, the assets of the bank 10 years after it was set up.
Question 6
View details
6. The curve \(C\) has polar equation $$r ^ { 2 } = a ^ { 2 } \cos 2 \theta , \quad \frac { - \pi } { 4 } \leq \theta \leq \frac { \pi } { 4 }$$
  1. Sketch the curve \(C\).
  2. Find the polar coordinates of the points where tangents to \(C\) are parallel to the initial line.
  3. Find the area of the region bounded by \(C\).
Question 7
View details
7. (a) Given that \(x = e ^ { t }\), show that
  1. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { e } ^ { - t } \frac { \mathrm {~d} y } { \mathrm {~d} t }$$
  2. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \mathrm { e } ^ { - 2 t } \left( \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} t } \right)$$ (b) Use you answers to part (a) to show that the substitution \(x = \mathrm { e } ^ { t }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = x ^ { 3 }$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 3 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 2 y = \mathrm { e } ^ { 3 t }$$ (c) Hence find the general solution of $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = x ^ { 3 }$$
Question 8
View details
  1. (a) Given that \(z = e ^ { i \theta }\), show that
$$z ^ { p } + \frac { 1 } { z ^ { p } } = 2 \cos p \theta$$ where \(p\) is a positive integer.
(b) Given that $$\cos ^ { 4 } \theta = A \cos 4 \theta + B \cos 2 \theta + C$$ find the values of the constants \(A , B\) and \(C\). The region \(R\) bounded by the curve with equation \(y = \cos ^ { 2 } x , - \frac { \pi } { 2 } \leq x \leq \frac { \pi } { 2 }\), and the \(x\)-axis is rotated through \(2 \pi\) about the \(x\)-axis.
(c) Find the volume of the solid generated.