- (a) Show that the transformation \(T\)
$$w = \frac { z - 1 } { z + 1 }$$
maps the circle \(| z | = 1\) in the \(z\)-plane to the line \(| w - 1 | = | w + \mathrm { i } |\) in the \(w\)-plane.
The transformation \(T\) maps the region \(| z | \leq 1\) in the \(z\)-plane to the region \(R\) in the \(w\)-plane.
(b) Shade the region \(R\) on an Argand diagram.