The function f , defined by \(\mathrm { f } : x \mapsto a + b \sin x\) for \(x \in \mathbb { R }\), is such that \(\mathrm { f } \left( \frac { 1 } { 6 } \pi \right) = 4\) and \(\mathrm { f } \left( \frac { 1 } { 2 } \pi \right) = 3\).
Find the values of the constants \(a\) and \(b\).
Evaluate \(\mathrm { ff } ( 0 )\).
The function g is defined by \(\mathrm { g } : x \mapsto c + d \sin x\) for \(x \in \mathbb { R }\). The range of g is given by \(- 4 \leqslant \mathrm {~g} ( x ) \leqslant 10\). Find the values of the constants \(c\) and \(d\).