A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q5
CAIE P1 2017 November — Question 5
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2017
Session
November
Topic
Reciprocal Trig & Identities
5
Show that the equation \(\cos 2 x \left( \tan ^ { 2 } 2 x + 3 \right) + 3 = 0\) can be expressed as $$2 \cos ^ { 2 } 2 x + 3 \cos 2 x + 1 = 0$$
Hence solve the equation \(\cos 2 x \left( \tan ^ { 2 } 2 x + 3 \right) + 3 = 0\) for \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10