9
\includegraphics[max width=\textwidth, alt={}, center]{518bb805-5b14-4b41-94fd-38a31a90c218-16_533_601_258_772}
The diagram shows a trapezium \(O A B C\) in which \(O A\) is parallel to \(C B\). The position vectors of \(A\) and \(B\) relative to the origin \(O\) are given by \(\overrightarrow { O A } = \left( \begin{array} { r } 2
- 2
- 1 \end{array} \right)\) and \(\overrightarrow { O B } = \left( \begin{array} { l } 6
1
1 \end{array} \right)\).
- Show that angle \(O A B\) is \(90 ^ { \circ }\).
The magnitude of \(\overrightarrow { C B }\) is three times the magnitude of \(\overrightarrow { O A }\). - Find the position vector of \(C\).
- Find the exact area of the trapezium \(O A B C\), giving your answer in the form \(a \sqrt { } b\), where \(a\) and \(b\) are integers.