Edexcel FP2 2017 June — Question 4

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2017
SessionJune
TopicTaylor series
TypeMaclaurin series for ln(a+bx)

4. $$y = \ln \left( \frac { 1 } { 1 - 2 x } \right) , \quad | x | < \frac { 1 } { 2 }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\)
  2. Hence, or otherwise, find the series expansion of \(\ln \left( \frac { 1 } { 1 - 2 x } \right)\) about \(x = 0\), in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\). Give each coefficient in its simplest form.
  3. Use your expansion to find an approximate value for \(\ln \left( \frac { 3 } { 2 } \right)\), giving your answer
    to 3 decimal places.