Edexcel FP2 (Further Pure Mathematics 2) 2017 June

Question 1
View details
  1. (a) Show that, for \(r > 0\)
$$\frac { 1 } { r ^ { 2 } } - \frac { 1 } { ( r + 1 ) ^ { 2 } } \equiv \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }$$ (b) Hence prove that, for \(n \in \mathbb { N }\) $$\sum _ { r = 1 } ^ { n } \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } = \frac { n ( n + 2 ) } { ( n + 1 ) ^ { 2 } }$$ (c) Show that, for \(n \in \mathbb { N } , n > 1\) $$\sum _ { r = n } ^ { 3 n } \frac { 6 r + 3 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } = \frac { a n ^ { 2 } + b n + c } { n ^ { 2 } ( 3 n + 1 ) ^ { 2 } }$$ where \(a , b\) and \(c\) are constants to be found.
Question 2
View details
2. Use algebra to find the set of values of \(x\) for which $$\frac { x - 2 } { 2 ( x + 2 ) } \leqslant \frac { 12 } { x ( x + 2 ) }$$ "
Question 3
View details
3. Solve the equation $$z ^ { 3 } + 32 + 32 i \sqrt { 3 } = 0$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(r > 0\) and \(- \pi < \theta \leqslant \pi\)
Question 4
View details
4. $$y = \ln \left( \frac { 1 } { 1 - 2 x } \right) , \quad | x | < \frac { 1 } { 2 }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\)
  2. Hence, or otherwise, find the series expansion of \(\ln \left( \frac { 1 } { 1 - 2 x } \right)\) about \(x = 0\), in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\). Give each coefficient in its simplest form.
  3. Use your expansion to find an approximate value for \(\ln \left( \frac { 3 } { 2 } \right)\), giving your answer
    to 3 decimal places.
Question 5
View details
5. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 26 \sin 3 x$$ (b) Find the particular solution of this differential equation for which \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
when \(x = 0\) when \(x = 0\)
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9019397a-a9c2-4b69-97fd-ea9eb9132244-18_364_695_260_756} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of a curve with polar equation $$r = 6 + a \sin \theta$$ where \(0 < a < 6\) and \(0 \leqslant \theta < 2 \pi\)
The area enclosed by the curve is \(\frac { 97 \pi } { 2 }\)
Find the value of the constant \(a\).
Question 7
View details
7. (a) Find, in the form \(y = \mathrm { f } ( x )\), the general solution of the equation $$\cos x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y \sin x = 2 \cos ^ { 3 } x \sin x + 1 , \quad 0 < x < \frac { \pi } { 2 }$$ Given that \(y = 5 \sqrt { 2 }\) when \(x = \frac { \pi } { 4 }\)
(b) find the value of \(y\) when \(x = \frac { \pi } { 6 }\), giving your answer in the form \(a + b \sqrt { 3 }\), where \(a\) and \(b\) are rational numbers to be found.
Question 8
View details
8. The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by $$w = \frac { z + 3 \mathrm { i } } { 1 + \mathrm { i } z } , \quad z \neq \mathrm { i }$$ The transformation \(T\) maps the circle \(| z | = 1\) in the \(z\)-plane onto the line \(l\) in the \(w\)-plane.
  1. Find a cartesian equation of the line \(l\). The circle \(| z - a - b \mathrm { i } | = c\) in the \(z\)-plane is mapped by \(T\) onto the circle \(| w | = 5\) in the \(w\)-plane.
  2. Find the exact values of the real constants \(a\), \(b\) and \(c\).
    END