Edexcel FP2 (Further Pure Mathematics 2) 2014 June

Question 1
View details
  1. (a) Express \(\frac { 2 } { ( r + 2 ) ( r + 4 ) }\) in partial fractions.
    (b) Hence show that
$$\sum _ { r = 1 } ^ { n } \frac { 2 } { ( r + 2 ) ( r + 4 ) } = \frac { n ( 7 n + 25 ) } { 12 ( n + 3 ) ( n + 4 ) }$$
Question 2
View details
2. Use algebra to find the set of values of \(x\) for which $$\left| 3 x ^ { 2 } - 19 x + 20 \right| < 2 x + 2$$
Question 3
View details
3. $$y = \sqrt { 8 + \mathrm { e } ^ { x } } , \quad x \in \mathbb { R }$$ Find the series expansion for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\), giving each coefficient in its simplest form.
Question 4
View details
4. (a) Use de Moivre's theorem to show that $$\cos 6 \theta = 32 \cos ^ { 6 } \theta - 48 \cos ^ { 4 } \theta + 18 \cos ^ { 2 } \theta - 1$$ (b) Hence solve for \(0 \leqslant \theta \leqslant \frac { \pi } { 2 }\) $$64 \cos ^ { 6 } \theta - 96 \cos ^ { 4 } \theta + 36 \cos ^ { 2 } \theta - 3 = 0$$ giving your answers as exact multiples of \(\pi\).
Question 5
View details
  1. (a) Find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 10 y = 27 \mathrm { e } ^ { - x }$$ (b) Find the particular solution that satisfies \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\)
Question 6
View details
6. The transformation \(T\) from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\), is given by $$w = \frac { 4 ( 1 - \mathrm { i } ) z - 8 \mathrm { i } } { 2 ( - 1 + \mathrm { i } ) z - \mathrm { i } } , \quad z \neq \frac { 1 } { 4 } - \frac { 1 } { 4 } \mathrm { i }$$ The transformation \(T\) maps the points on the line \(l\) with equation \(y = x\) in the \(z\)-plane to a circle \(C\) in the \(w\)-plane.
  1. Show that $$w = \frac { a x ^ { 2 } + b x i + c } { 16 x ^ { 2 } + 1 }$$ where \(a\), \(b\) and \(c\) are real constants to be found.
  2. Hence show that the circle \(C\) has equation $$( u - 3 ) ^ { 2 } + v ^ { 2 } = k ^ { 2 }$$ where \(k\) is a constant to be found.
Question 7
View details
7. (a) Show that the substitution \(v = y ^ { - 3 }\) transforms the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 2 x ^ { 4 } y ^ { 4 }$$ into the differential equation $$\begin{aligned} & \frac { \mathrm { d } v } { \mathrm {~d} x } - \frac { 3 v } { x } = - 6 x ^ { 3 }
& \text { ration (II), find a general solution of differential equation (I) } \end{aligned}$$ in the form \(y ^ { 3 } = \mathrm { f } ( x )\).
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c21767d7-7331-47f7-8e59-06a0727c67c5-13_771_1036_260_593} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with polar equation $$r = 1 + \tan \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ The tangent to the curve \(C\) at the point \(P\) is perpendicular to the initial line.
  1. Find the polar coordinates of the point \(P\). The point \(Q\) lies on the curve \(C\), where \(\theta = \frac { \pi } { 3 }\)
    The shaded region \(R\) is bounded by \(O P , O Q\) and the curve \(C\), as shown in Figure 1
  2. Find the exact area of \(R\), giving your answer in the form $$\frac { 1 } { 2 } ( \ln p + \sqrt { q } + r )$$ where \(p , q\) and \(r\) are integers to be found.