6. The transformation \(T\) from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\), is given by
$$w = \frac { 4 ( 1 - \mathrm { i } ) z - 8 \mathrm { i } } { 2 ( - 1 + \mathrm { i } ) z - \mathrm { i } } , \quad z \neq \frac { 1 } { 4 } - \frac { 1 } { 4 } \mathrm { i }$$
The transformation \(T\) maps the points on the line \(l\) with equation \(y = x\) in the \(z\)-plane to a circle \(C\) in the \(w\)-plane.
- Show that
$$w = \frac { a x ^ { 2 } + b x i + c } { 16 x ^ { 2 } + 1 }$$
where \(a\), \(b\) and \(c\) are real constants to be found.
- Hence show that the circle \(C\) has equation
$$( u - 3 ) ^ { 2 } + v ^ { 2 } = k ^ { 2 }$$
where \(k\) is a constant to be found.