Edexcel F2 2024 June — Question 10

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2024
SessionJune
TopicPolar coordinates

10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{09582a82-cd57-4c2f-aefa-8412d4f4cb64-32_497_919_292_573} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with polar equation $$r = 1 + \cos \theta \quad 0 \leqslant \theta \leqslant \pi$$ and the line \(l\) with polar equation $$r = k \sec \theta \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ where \(k\) is a positive constant.
Given that
  • \(\quad C\) and \(l\) intersect at the point \(P\)
  • \(O P = 1 + \frac { \sqrt { 3 } } { 2 }\)
    1. determine the exact value of \(k\).
The finite region \(R\), shown shaded in Figure 1, is bounded by \(C\), the initial line and \(l\).
  • Use algebraic integration to show that the area of \(R\) is $$p \pi + q \sqrt { 3 } + r$$ where \(p , q\) and \(r\) are simplified rational numbers to be determined.