Edexcel F2 2024 June — Question 2

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2024
SessionJune
TopicFirst order differential equations (integrating factor)

2. $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } - y ^ { 3 } = 4$$
  1. Show that $$x \frac { \mathrm {~d} ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = a y \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + \left( b y ^ { 2 } + c \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }$$ where \(a\), \(b\) and \(c\) are integers to be determined. Given that \(y = 1\) at \(x = 2\)
  2. determine the Taylor series expansion for \(y\) in ascending powers of \(( x - 2 )\), up to and including the term in \(( x - 2 ) ^ { 3 }\), giving each coefficient in simplest form.