Edexcel F2 (Further Pure Mathematics 2) 2024 January

Question 1
View details
  1. Using algebra, solve the inequality
$$\frac { 1 } { x + 2 } > 2 x + 3$$
Question 2
View details
2. $$z = 6 - 6 \sqrt { 3 } i$$
    1. Determine the modulus of \(z\)
    2. Show that the argument of \(z\) is \(- \frac { \pi } { 3 }\) Using de Moivre's theorem, and making your method clear,
  1. determine, in simplest form, \(z ^ { 4 }\)
  2. Determine the values of \(w\) such that \(w ^ { 2 } = z\), giving your answers in the form \(a + \mathrm { i } b\), where \(a\) and \(b\) are real numbers.
Question 3
View details
  1. (a) Show that for \(r \geqslant 1\)
$$\frac { r } { \sqrt { r ( r + 1 ) } + \sqrt { r ( r - 1 ) } } \equiv A ( \sqrt { r ( r + 1 ) } - \sqrt { r ( r - 1 ) } )$$ where \(A\) is a constant to be determined.
(b) Hence use the method of differences to determine a simplified expression for $$\sum _ { r = 1 } ^ { n } \frac { r } { \sqrt { r ( r + 1 ) } + \sqrt { r ( r - 1 ) } }$$ (c) Determine, as a surd in simplest form, the constant \(k\) such that $$\sum _ { r = 1 } ^ { n } \frac { k r } { \sqrt { r ( r + 1 ) } + \sqrt { r ( r - 1 ) } } = \sqrt { \sum _ { r = 1 } ^ { n } r }$$
Question 4
View details
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Determine, in ascending powers of \(\left( x - \frac { \pi } { 6 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 6 } \right) ^ { 3 }\), the Taylor series expansion about \(\frac { \pi } { 6 }\) of $$y = \tan \left( \frac { 3 x } { 2 } \right)$$ giving each coefficient in simplest form.
  2. Hence show that $$\tan \frac { 3 \pi } { 8 } \approx 1 + \frac { \pi } { 4 } + \frac { \pi ^ { 2 } } { A } + \frac { \pi ^ { 3 } } { B }$$ where \(A\) and \(B\) are integers to be determined.
Question 5
View details
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d5eb0ca8-92ba-466f-84f5-8fc36c168695-16_669_817_296_625} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with polar equation $$r = 10 \cos \theta + \tan \theta \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ The point \(P\) lies on the curve where \(\theta = \frac { \pi } { 3 }\)
The region \(R\), shown shaded in Figure 1, is bounded by the initial line, the curve and the line \(O P\), where \(O\) is the pole. Use algebraic integration to show that the exact area of \(R\) is $$\frac { 1 } { 12 } ( a \pi + b \sqrt { 3 } + c )$$ where \(a\), \(b\) and \(c\) are integers to be determined.
Question 6
View details
  1. The differential equation
$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 13 x = 8 \mathrm { e } ^ { - 3 t } \quad t \geqslant 0$$ describes the motion of a particle along the \(x\)-axis.
  1. Determine the general solution of this differential equation. Given that the motion of the particle satisfies \(x = \frac { 1 } { 2 }\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 1 } { 2 }\) when \(t = 0\)
  2. determine the particular solution for the motion of the particle. On the graph of the particular solution found in part (b), the first turning point for \(t > 0\) occurs at \(x = a\).
  3. Determine, to 3 significant figures, the value of \(a\).
    [0pt] [Solutions relying entirely on calculator technology are not acceptable.]
Question 7
View details
  1. A transformation \(T\) from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\) is given by
$$w = \frac { z - 3 } { 2 \mathrm { i } - z } \quad z \neq 2 \mathrm { i }$$ The line in the \(z\)-plane with equation \(y = x + 3\) is mapped by \(T\) onto a circle \(C\) in the \(w\)-plane.
  1. Determine
    1. the coordinates of the centre of \(C\)
    2. the exact radius of \(C\) The region \(y > x + 3\) in the \(z\)-plane is mapped by \(T\) onto the region \(R\) in the \(w\)-plane.
  2. On a single Argand diagram
    1. sketch the circle \(C\)
    2. shade and label the region \(R\)
Question 8
View details
  1. (a) For all the values of \(x\) where the identity is defined, prove that
$$\cot 2 x + \tan x \equiv \operatorname { cosec } 2 x$$ (b) Show that the substitution \(y ^ { 2 } = w \sin 2 x\), where \(w\) is a function of \(x\), transforms the differential equation $$y \frac { \mathrm {~d} y } { \mathrm {~d} x } + y ^ { 2 } \tan x = \sin x \quad 0 < x < \frac { \pi } { 2 }$$ into the differential equation $$\frac { \mathrm { d } w } { \mathrm {~d} x } + 2 w \operatorname { cosec } 2 x = \sec x \quad 0 < x < \frac { \pi } { 2 }$$ (c) By solving differential equation (II), determine a general solution of differential equation (I) in the form \(y ^ { 2 } = \mathrm { f } ( x )\), where \(\mathrm { f } ( x )\) is a function in terms of \(\cos x\) $$\text { [You may use without proof } \left. \int \operatorname { cosec } 2 x \mathrm {~d} x = \frac { 1 } { 2 } \ln | \tan x | \text { (+ constant) } \right]$$