2. (a) Using the formulae for \(\sum _ { r = 1 } ^ { n } r , \sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\), show that
$$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r + 3 ) = \frac { 1 } { 12 } n ( n + 1 ) ( n + 2 ) ( 3 n + k ) ,$$
where \(k\) is a constant to be found.
(b) Hence evaluate \(\sum _ { r = 21 } ^ { 40 } r ( r + 1 ) ( r + 3 )\).