Edexcel F1 2021 October — Question 8

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2021
SessionOctober
TopicConic sections

  1. The parabola \(C\) has equation \(y ^ { 2 } = 20 x\)
The point \(P\) on \(C\) has coordinates ( \(5 p ^ { 2 } , 10 p\) ) where \(p\) is a non-zero constant.
  1. Use calculus to show that the tangent to \(C\) at \(P\) has equation $$p y - x = 5 p ^ { 2 }$$ The tangent to \(C\) at \(P\) meets the \(y\)-axis at the point \(A\).
  2. Write down the coordinates of \(A\). The point \(S\) is the focus of \(C\).
  3. Write down the coordinates of \(S\). The straight line \(l _ { 1 }\) passes through \(A\) and \(S\).
    The straight line \(l _ { 2 }\) passes through \(O\) and \(P\), where \(O\) is the origin. Given that \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(B\),
  4. show that the coordinates of \(B\) satisfy the equation $$2 x ^ { 2 } + y ^ { 2 } = 10 x$$