| Exam Board | Edexcel |
| Module | F1 (Further Pure Mathematics 1) |
| Year | 2021 |
| Session | October |
| Topic | Sequences and series, recurrence and convergence |
5. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 3 } , \sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r ( r - 1 ) ( r - 3 ) = \frac { 1 } { 12 } n ( n + 1 ) ( n - 1 ) ( 3 n - 10 )$$
(b) Hence show that
$$\sum _ { r = n + 1 } ^ { 2 n + 1 } r ( r - 1 ) ( r - 3 ) = \frac { 1 } { 12 } n ( n + 1 ) \left( a n ^ { 2 } + b n + c \right)$$
where \(a\), \(b\) and \(c\) are integers to be determined.