4. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that
$$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$
for all positive integers \(n\).
(b) Hence find the exact value of the sum of the squares of the odd numbers between 200 and 500
\includegraphics[max width=\textwidth, alt={}, center]{a3457c24-fbda-413d-b3b2-6be375307318-13_2255_50_314_34}
| VIXV SIHIANI III IM IONOO | VIAV SIHI NI JYHAM ION OO | VI4V SIHI NI JLIYM ION OO |