Edexcel F1 2018 January — Question 7

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2018
SessionJanuary
TopicMatrices

7. (i) $$\mathbf { A } = \left( \begin{array} { r r } 6 & k
- 3 & - 4 \end{array} \right) , \text { where } k \text { is a real constant, } k \neq 8$$ Find, in terms of \(k\),
  1. \(\mathbf { A } ^ { - 1 }\)
  2. \(\mathbf { A } ^ { 2 }\) Given that \(\mathbf { A } ^ { 2 } + 3 \mathbf { A } ^ { - 1 } = \left( \begin{array} { r r } 5 & 9
    - 3 & - 5 \end{array} \right)\)
  3. find the value of \(k\).
    (ii) $$\mathbf { M } = \left( \begin{array} { c c } - \frac { 1 } { 2 } & - \sqrt { 3 }
    \frac { \sqrt { 3 } } { 2 } & - 1 \end{array} \right)$$ The matrix \(\mathbf { M }\) represents a one way stretch, parallel to the \(y\)-axis, scale factor \(p\), where \(p > 0\), followed by a rotation anticlockwise through an angle \(\theta\) about \(( 0,0 )\).
  4. Find the value of \(p\).
  5. Find the value of \(\theta\).