5. (i) Given that
$$\frac { 2 z + 3 } { z + 5 - 2 i } = 1 + i$$
find \(z\), giving your answer in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real constants.
(ii) Given that
$$w = ( 3 + \lambda \mathrm { i } ) ( 2 + \mathrm { i } )$$
where \(\lambda\) is a real constant, and that
$$| w | = 15$$
find the possible values of \(\lambda\).