Edexcel F1 2017 January — Question 8

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2017
SessionJanuary
TopicConic sections

8. The parabola \(C\) has equation \(y ^ { 2 } = 4 a x\), where \(a\) is a positive constant. The point \(P \left( a t ^ { 2 } , 2 a t \right)\) lies on \(C\).
  1. Using calculus, show that the normal to \(C\) at \(P\) has equation $$y + t x = a t ^ { 3 } + 2 a t$$ The point \(S\) is the focus of the parabola \(C\).
    The point \(B\) lies on the positive \(x\)-axis and \(O B = 5 O S\), where \(O\) is the origin.
  2. Write down, in terms of \(a\), the coordinates of the point \(B\). A circle has centre \(B\) and touches the parabola \(C\) at two distinct points \(Q\) and \(R\). Given that \(t \neq 0\),
  3. find the coordinates of the points \(Q\) and \(R\).
  4. Hence find, in terms of \(a\), the area of triangle \(B Q R\).