4. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r , \sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r ( 2 r + 1 ) ( 3 r + 1 ) = \frac { 1 } { 6 } n ( n + 1 ) \left( a n ^ { 2 } + b n + c \right)$$
where \(a\), \(b\) and \(c\) are integers to be determined.
(b) Hence find the value of
$$\sum _ { r = 10 } ^ { 20 } r ( 2 r + 1 ) ( 3 r + 1 )$$