Edexcel F1 2017 January — Question 7

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2017
SessionJanuary
TopicLinear transformations

7. (i) $$\mathbf { A } = \left( \begin{array} { r r } - 1 & 0
0 & 1 \end{array} \right)$$
  1. Describe fully the single transformation represented by the matrix \(\mathbf { A }\). The matrix \(\mathbf { B }\) represents a stretch, scale factor 3 , parallel to the \(x\)-axis.
  2. Find the matrix \(\mathbf { B }\).
    (ii) $$\mathbf { M } = \left( \begin{array} { r r } - 4 & 3
    - 3 & - 4 \end{array} \right)$$ The matrix \(\mathbf { M }\) represents an enlargement with scale factor \(k\) and centre ( 0,0 ), where \(k > 0\), followed by a rotation anticlockwise through an angle \(\theta\) about ( 0,0 ).
  3. Find the value of \(k\).
  4. Find the value of \(\theta\), giving your answer in radians to 2 decimal places.
  5. Find \(\mathbf { M } ^ { - 1 }\)