Edexcel C4 2017 June — Question 6

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2017
SessionJune
TopicVectors 3D & Lines

6. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$l _ { 1 } : \mathbf { r } = \left( \begin{array} { r } 4
28
4 \end{array} \right) + \lambda \left( \begin{array} { r } - 1
- 5
1 \end{array} \right) , \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { l } 5
3
1 \end{array} \right) + \mu \left( \begin{array} { r } 3
0
- 4 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters. The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(X\).
  1. Find the coordinates of the point \(X\).
  2. Find the size of the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\), giving your answer in degrees to 2 decimal places. The point \(A\) lies on \(l _ { 1 }\) and has position vector \(\left( \begin{array} { r } 2
    18
    6 \end{array} \right)\)
  3. Find the distance \(A X\), giving your answer as a surd in its simplest form. The point \(Y\) lies on \(l _ { 2 }\). Given that the vector \(\overrightarrow { Y A }\) is perpendicular to the line \(l _ { 1 }\)
  4. find the distance \(Y A\), giving your answer to one decimal place. The point \(B\) lies on \(l _ { 1 }\) where \(| \overrightarrow { A X } | = 2 | \overrightarrow { A B } |\).
  5. Find the two possible position vectors of \(B\).