Edexcel C4 2017 June — Question 3

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2017
SessionJune
TopicArea Under & Between Curves

3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cd958ff3-ed4e-4bd7-aa4b-339da6d618a6-08_560_1082_242_438} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \frac { 6 } { \left( \mathrm { e } ^ { x } + 2 \right) } , x \in \mathbb { R }\)
The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(y\)-axis, the \(x\)-axis and the line with equation \(x = 1\) The table below shows corresponding values of \(x\) and \(y\) for \(y = \frac { 6 } { \left( \mathrm { e } ^ { x } + 2 \right) }\)
\(x\)00.20.40.60.81
\(y\)21.718301.569811.419941.27165
  1. Complete the table above by giving the missing value of \(y\) to 5 decimal places.
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to find an estimate for the area of \(R\), giving your answer to 4 decimal places.
  3. Use the substitution \(u = \mathrm { e } ^ { x }\) to show that the area of \(R\) can be given by $$\int _ { a } ^ { b } \frac { 6 } { u ( u + 2 ) } \mathrm { d } u$$ where \(a\) and \(b\) are constants to be determined.
  4. Hence use calculus to find the exact area of \(R\). [Solutions based entirely on graphical or numerical methods are not acceptable.]