Edexcel C4 2006 June — Question 2

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2006
SessionJune
TopicGeneralised Binomial Theorem and Partial Fractions

2. $$f ( x ) = \frac { 3 x - 1 } { ( 1 - 2 x ) ^ { 2 } } , \quad | x | < \frac { 1 } { 2 }$$ Given that, for \(x \neq \frac { 1 } { 2 } , \quad \frac { 3 x - 1 } { ( 1 - 2 x ) ^ { 2 } } = \frac { A } { ( 1 - 2 x ) } + \frac { B } { ( 1 - 2 x ) ^ { 2 } } , \quad\) where \(A\) and \(B\) are constants,
  1. find the values of \(A\) and \(B\).
  2. Hence, or otherwise, find the series expansion of \(\mathrm { f } ( x )\), in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying each term.
    (6)