7.
\includegraphics[max width=\textwidth, alt={}]{c0c6303b-f527-4e68-91bc-5c9c6ffa8de8-11_209_212_214_863}
At time \(t\) seconds the length of the side of a cube is \(x \mathrm {~cm}\), the surface area of the cube is \(S \mathrm {~cm} ^ { 2 }\), and the volume of the cube is \(V \mathrm {~cm} ^ { 3 }\).
The surface area of the cube is increasing at a constant rate of \(8 \mathrm {~cm} ^ { 2 } \mathrm {~s} ^ { - 1 }\).
Show that
- \(\frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { k } { x }\), where \(k\) is a constant to be found,
- \(\frac { \mathrm { d } V } { \mathrm {~d} t } = 2 V ^ { \frac { 1 } { 3 } }\).
Given that \(V = 8\) when \(t = 0\),
- solve the differential equation in part (b), and find the value of \(t\) when \(V = 16 \sqrt { } 2\).