8. (a) Using the substitution \(x = 2 \cos u\), or otherwise, find the exact value of
$$\int _ { 1 } ^ { \sqrt { 2 } } \frac { 1 } { x ^ { 2 } \sqrt { } \left( 4 - x ^ { 2 } \right) } d x$$
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5ef3ae4a-a06d-48c1-8b79-7d7c3f95d120-14_680_1264_502_338}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
Figure 3 shows a sketch of part of the curve with equation \(y = \frac { 4 } { x \left( 4 - x ^ { 2 } \right) ^ { \frac { 1 } { 4 } } } , \quad 0 < x < 2\).
The shaded region \(S\), shown in Figure 3, is bounded by the curve, the \(x\)-axis and the lines with equations \(x = 1\) and \(x = \sqrt { } 2\). The shaded region \(S\) is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
(b) Using your answer to part (a), find the exact volume of the solid of revolution formed.