Edexcel C4 2010 January — Question 4

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2010
SessionJanuary
TopicVectors 3D & Lines

4. The line \(l _ { 1 }\) has vector equation $$\mathbf { r } = \left( \begin{array} { c } - 6
4
- 1 \end{array} \right) + \lambda \left( \begin{array} { c } 4
- 1
3 \end{array} \right)$$ and the line \(l _ { 2 }\) has vector equation $$\mathbf { r } = \left( \begin{array} { c } - 6
4
- 1 \end{array} \right) + \mu \left( \begin{array} { c } 3
- 4
1 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are parameters.
The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(A\) and the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\) is \(\theta\).
  1. Write down the coordinates of \(A\).
  2. Find the value of \(\cos \theta\). The point \(X\) lies on \(l _ { 1 }\) where \(\lambda = 4\).
  3. Find the coordinates of \(X\).
  4. Find the vector \(\overrightarrow { A X }\).
  5. Hence, or otherwise, show that \(| \overrightarrow { A X } | = 4 \sqrt { } 26\). The point \(Y\) lies on \(l _ { 2 }\). Given that the vector \(\overrightarrow { Y X }\) is perpendicular to \(l _ { 1 }\),
  6. find the length of \(A Y\), giving your answer to 3 significant figures. \section*{LU}