OCR C4 (Core Mathematics 4) 2012 June

Question 1
View details
1 Simplify
  1. \(\frac { 1 - x } { x ^ { 2 } - 3 x + 2 }\),
  2. \(\frac { ( x + 1 ) } { ( x - 1 ) ( x - 3 ) } - \frac { ( x - 5 ) } { ( x - 3 ) ( x - 4 ) }\).
Question 2
View details
2 Use integration by parts to find \(\int \ln ( x + 2 ) \mathrm { d } x\).
Question 3
View details
3
  1. Expand \(\frac { 1 + x ^ { 2 } } { \sqrt { 1 + 4 x } }\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
  2. State the set of values of \(x\) for which this expansion is valid.
Question 4
View details
4 Solve the differential equation $$\mathrm { e } ^ { 2 y } \frac { \mathrm {~d} y } { \mathrm {~d} x } + \tan x = 0 ,$$ given that \(x = 0\) when \(y = 0\). Give your answer in the form \(y = \mathrm { f } ( x )\).
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{b5d85e48-0d5a-4edf-bf58-eba4f8d28d3d-2_425_680_1302_689} In the diagram the points \(A\) and \(B\) have position vectors \(\mathbf { a }\) and \(\mathbf { b }\) with respect to the origin \(O\). Given that \(| \mathbf { a } | = 3 , | \mathbf { b } | = 4\) and \(\mathbf { a . b } = 6\), find
  1. the angle \(A O B\),
  2. \(| \mathbf { a } - \mathbf { b } |\).
Question 6
View details
6 Use the substitution \(u = 1 + \sqrt { x }\) to show that $$\int _ { 4 } ^ { 9 } \frac { 1 } { 1 + \sqrt { x } } \mathrm {~d} x = 2 + 2 \ln \frac { 3 } { 4 }$$
Question 7
View details
7 Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } ( 1 - \sin 3 x ) ^ { 2 } \mathrm {~d} x\).
Question 8
View details
8
  1. Find the gradient of the curve \(x ^ { 2 } + x y + y ^ { 2 } = 3\) at the point \(( - 1 , - 1 )\).
  2. A curve \(C\) has parametric equations $$x = 2 t ^ { 2 } - 1 , y = t ^ { 3 } + t$$
    1. Find the coordinates of the point on \(C\) at which the tangent is parallel to the \(y\)-axis.
    2. Find the values of \(t\) for which \(x\) and \(y\) have the same rate of change with respect to \(t\).
Question 9
View details
9
  1. Express \(\frac { x ^ { 2 } - x - 11 } { ( x + 1 ) ( x - 2 ) ^ { 2 } }\) in partial fractions.
  2. Find the exact value of \(\int _ { 3 } ^ { 4 } \frac { x ^ { 2 } - x - 11 } { ( x + 1 ) ( x - 2 ) ^ { 2 } } \mathrm {~d} x\), giving your answer in the form \(a + \ln b\), where \(a\) and \(b\) are rational numbers.
Question 10
View details
10 Lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations $$\mathbf { r } = - \mathbf { i } + 2 \mathbf { j } + 7 \mathbf { k } + t ( 2 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } + 9 \mathbf { j } - 4 \mathbf { k } + s ( \mathbf { i } + 3 \mathbf { j } - 2 \mathbf { k } )$$ respectively. The point \(A\) has coordinates ( \(- 3,0,6\) ) relative to the origin \(O\).
  1. Show that \(A\) lies on \(l _ { 1 }\) and that \(O A\) is perpendicular to \(l _ { 1 }\).
  2. Show that the line through \(O\) and \(A\) intersects \(l _ { 2 }\).
  3. Given that the point of intersection in part (ii) is \(B\), find the ratio \(| \overrightarrow { O A } | : | \overrightarrow { B A } |\). \section*{THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE.}