OCR C2 (Core Mathematics 2) 2016 June

Question 1
View details
1
\includegraphics[max width=\textwidth, alt={}, center]{555f7205-5e2a-4471-901d-d8abc9dd4b4a-2_250_611_356_721} The diagram shows triangle \(A B C\), with \(A C = 8 \mathrm {~cm}\) and angle \(C A B = 30 ^ { \circ }\).
  1. Given that the area of the triangle is \(20 \mathrm {~cm} ^ { 2 }\), find the length of \(A B\).
  2. Find the length of \(B C\), giving your answer correct to 3 significant figures.
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{555f7205-5e2a-4471-901d-d8abc9dd4b4a-2_417_476_1030_790} The diagram shows a sector \(A O B\) of a circle with centre \(O\) and radius \(r \mathrm {~cm}\). The angle \(A O B\) is \(54 ^ { \circ }\). The perimeter of the sector is 60 cm .
  1. Express \(54 ^ { \circ }\) exactly in radians, simplifying your answer.
  2. Find the value of \(r\), giving your answer correct to 3 significant figures.
Question 3
View details
3
  1. Find the binomial expansion of \(( 3 + k x ) ^ { 3 }\), simplifying the terms.
  2. It is given that, in the expansion of \(( 3 + k x ) ^ { 3 }\), the coefficient of \(x ^ { 2 }\) is equal to the constant term. Find the possible values of \(k\), giving your answers in an exact form.
Question 4
View details
4
  1. Express \(2 \log _ { 3 } x - \log _ { 3 } ( x + 4 )\) as a single logarithm.
  2. Hence solve the equation \(2 \log _ { 3 } x - \log _ { 3 } ( x + 4 ) = 2\).
Question 5
View details
5
  1. Find \(\int \left( x ^ { 2 } + 2 \right) ( 2 x - 3 ) \mathrm { d } x\).
    1. Find, in terms of \(a\), the value of \(\int _ { 1 } ^ { a } \left( 6 x ^ { - 2 } - 4 x ^ { - 3 } \right) \mathrm { d } x\), where \(a\) is a constant greater than 1 .
    2. Deduce the value of \(\int _ { 1 } ^ { \infty } \left( 6 x ^ { - 2 } - 4 x ^ { - 3 } \right) \mathrm { d } x\).
Question 6
View details
6 An arithmetic progression \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by \(u _ { 1 } = 5\) and \(u _ { n + 1 } = u _ { n } + 1.5\) for \(n \geqslant 1\).
  1. Given that \(u _ { k } = 140\), find the value of \(k\). A geometric progression \(w _ { 1 } , w _ { 2 } , w _ { 3 } , \ldots\) is defined by \(w _ { n } = 120 \times ( 0.9 ) ^ { n - 1 }\) for \(n \geqslant 1\).
  2. Find the sum of the first 16 terms of this geometric progression, giving your answer correct to 3 significant figures.
  3. Use an algebraic method to find the smallest value of \(N\) such that \(\sum _ { n = 1 } ^ { N } u _ { n } > \sum _ { n = 1 } ^ { \infty } w _ { n }\).
Question 7
View details
7 The cubic polynomial \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = x ^ { 3 } - 3 x ^ { 2 } - x + 3\).
  1. Find the quotient and remainder when \(\mathrm { f } ( x )\) is divided by \(( x + 1 )\).
  2. Hence find the three roots of the equation \(\mathrm { f } ( x ) = 0\).
    \includegraphics[max width=\textwidth, alt={}, center]{555f7205-5e2a-4471-901d-d8abc9dd4b4a-3_540_718_1466_660} The diagram shows the curve \(C\) with equation \(y = x ^ { 4 } - 4 x ^ { 3 } - 2 x ^ { 2 } + 12 x + 9\).
  3. Show that the \(x\)-coordinates of the stationary points on \(C\) are given by \(x ^ { 3 } - 3 x ^ { 2 } - x + 3 = 0\).
  4. Use integration to find the exact area of the region enclosed by \(C\) and the \(x\)-axis.
Question 8
View details
8
  1. The curve \(y = 3 ^ { x }\) can be transformed to the curve \(y = 3 ^ { x - 2 }\) by a translation. Give details of the translation.
  2. Alternatively, the curve \(y = 3 ^ { x }\) can be transformed to the curve \(y = 3 ^ { x - 2 }\) by a stretch. Give details of the stretch.
  3. Sketch the curve \(y = 3 ^ { x - 2 }\), stating the coordinates of any points of intersection with the axes.
  4. The point \(P\) on the curve \(y = 3 ^ { x - 2 }\) has \(y\)-coordinate equal to 180 . Use logarithms to find the \(x\)-coordinate of \(P\), correct to 3 significant figures.
  5. Use the trapezium rule, with 2 strips each of width 1.5, to find an estimate for \(\int _ { 1 } ^ { 4 } 3 ^ { x - 2 } \mathrm {~d} x\). Give your answer correct to 3 significant figures.
Question 9
View details
9 A curve has equation \(y = \sin ( a x )\), where \(a\) is a positive constant and \(x\) is in radians.
  1. State the period of \(y = \sin ( a x )\), giving your answer in an exact form in terms of \(a\).
  2. Given that \(x = \frac { 1 } { 5 } \pi\) and \(x = \frac { 2 } { 5 } \pi\) are the two smallest positive solutions of \(\sin ( a x ) = k\), where \(k\) is a positive constant, find the values of \(a\) and \(k\).
  3. Given instead that \(\sin ( a x ) = \sqrt { 3 } \cos ( a x )\), find the two smallest positive solutions for \(x\), giving your answers in an exact form in terms of \(a\). \section*{END OF QUESTION PAPER}